# Nirma University <br> Institute of Technology <br> Department of Mathematics \& Humanities 

B. Tech. (ALL) - Semester - I

Calculus (MA101)
Assignment - 1

## Part I: Differential Calculus

1. Find $n^{\text {th }}$ derivative of $y=\log \left(1-x^{2}\right)$.
2. If $y=\sin n x+\cos n x$, show that $y_{r}=n^{r} \sqrt{1+(-1)^{r} \sin 2 n x}$.
3. Find $n^{\text {th }}$ derivative of $y=\frac{1}{x^{2}+x+1}$.
4. Find $n^{t h}$ derivative of the following functions:
5. (i) $y=\frac{x}{(4 x+3)(x-1)}$
(ii) $y=\log \left(\frac{3 x-1}{3 x+1}\right)^{1 / 3}$
6. Find $n^{\text {th }}$ derivative of $y=a^{2 x}+\frac{x}{x-1}$.

## Part-II Integral Calculus

1. Evaluate $\int_{0}^{1} \frac{1}{\sqrt{-\log x}} d x$.
2. Show that $\int_{0}^{\infty} e^{-a^{2} x} x^{\frac{3}{2}} d x=\frac{3}{4 a^{5}} \sqrt{\pi}$.
3. Show that $\int_{0}^{\infty} 3^{-x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{\log 3}}$.
4. Show that $\left.\int_{0}^{1}\left(x \log \frac{1}{x}\right)^{1 / 3} d x=\left(\frac{3}{4}\right)^{4 / 3}\right) \frac{4}{3}$.
5. A particle of mass $m$ starts moving from rest along the $x$-axis towards the origin from its initial position $x=1$. Its initial potential is given by $V=-\frac{1}{2} m \log x$. Find the time required for the particle to reach the origin.
