Nirma University Institute of Technology

Department of Mathematics & Humanities

B. Tech. (ALL) – Semester - I Calculus (MA101)

Assignment – 1

Part I: Differential Calculus

- 1. Find n^{th} derivative of $y = \log(1 x^2)$.
- 2. If $y = \sin nx + \cos nx$, show that $y_r = n^r \sqrt{1 + (-1)^r \sin 2nx}$.
- 3. Find n^{th} derivative of $y = \frac{1}{x^2 + x + 1}$.
- 4. Find n^{th} derivative of the following functions:

5. (i)
$$y = \frac{x}{(4x+3)(x-1)}$$
 (ii) $y = \log\left(\frac{3x-1}{3x+1}\right)^{\frac{1}{3}}$

6. Find n^{th} derivative of $y = a^{2x} + \frac{x}{x-1}$.

Part-II Integral Calculus

- 1. Evaluate $\int_{0}^{1} \frac{1}{\sqrt{-\log x}} dx$.
- 2. Show that $\int_{0}^{\infty} e^{-a^{2}x} x^{\frac{3}{2}} dx = \frac{3}{4a^{5}} \sqrt{\pi}$.
- 3. Show that $\int_{0}^{\infty} 3^{-x^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{\log 3}}$.
- 4. Show that $\int_{0}^{1} \left(x \log \frac{1}{x} \right)^{\frac{1}{3}} dx = \left(\frac{3}{4} \right)^{\frac{4}{3}} \sqrt{\frac{4}{3}}$.
- 5. A particle of mass m starts moving from rest along the x-axis towards the origin from its initial position x=1. Its initial potential is given by $V=-\frac{1}{2}m\log x$. Find the time required for the particle to reach the origin.