Nirma University Institute of Technology Department of Mathematics & Humanities B. Tech. (ALL) – Semester - I Calculus (MA101) <u>Assgnment – 3</u>

Part I: Differential Calculus

- 1. Show that $(1+x)^x = 1 + x^2 \frac{1}{2}x^3 + \frac{5}{6}x^4 \frac{3}{4}x^5 + \frac{33}{40}x^6 + \cdots$
- 2. Prove that $\log(1 + x + x^2 + x^3 + x^4) = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 \frac{4}{5}x^5 + \frac{1}{6}x^6 + \cdots$
- 3. Expand $\cos^{-1}\left(\frac{x-x^{-1}}{x+x^{-1}}\right)$ in ascending powers of x. (x>0).
- 4. Given $\log_{10} 4 = 0.6021$, calculate approximate value of $\log_{10} 404$.
- 5. Evaluate the following limits, whichever exists.
- a) $\lim_{(x,y)\to(0,0)} \frac{xy\sin xy}{(x^2+y^2)}$
- b) $\lim_{(x,y)\to(0,0)} (x^2 + y^2) \sin \frac{1}{rv}$
- 6. For a function f defined by $f(x, y) = \begin{cases} xy \frac{x^2 y^2}{x^2 + y^2} & \text{for}(x, y) \neq (0, 0) \\ 0 & \text{for}(x, y) \neq (0, 0) \end{cases}$ Verify whether $f_{yx}(0, 0) = f_{xy}(0, 0)$.

7. If
$$z = x^2 \tan^{-1}\left(\frac{y}{x}\right) - y^2 \tan^{-1}\left(\frac{x}{y}\right)$$
, prove that $\frac{\partial^2 z}{\partial x \partial y} = \frac{x^2 - y^2}{x^2 + y^2}$.

8. If
$$z = 3xy - y^3 + (y^2 - 2x)^{3/2}$$
, verify that $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$ and $\frac{\partial^2 z}{\partial x^2} \cdot \frac{\partial^2 z}{\partial y^2} = \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2$.

- 9. Suppose that your weight ω in pounds is a function f(c, n) of the number *c* of calories you consume daily and this number *n* of minutes you exercise daily. Using the units for ω , *c* and *n*, interpret in everyday terms the statements $\frac{\partial w}{\partial c}(2000,15) = 0.02 \text{ and } \frac{\partial w}{\partial n}(2000,15) = -0.025$
- 10. A one -meter long bar is heated unevenly, with temperature in °C at a distance x meters from one end at a time t given by $H(x,t) = 100e^{-0.1t} \sin(\pi x)$ $0 \le x \le 1$.
 - a) Sketch a graph of H against x for t=0 and t=1.
 - b) Calculate $H_x(0.2, t)$ and $H_x(0.8, t)$. What is the practical interpretation (in terms of temperature) of these two partial derivatives? Explain why each one has the sign it does.
 - c) Calculate $H_t(x,t)$. What is its sign? What is its interpretation in terms of temperature?

Part-II Integral Calculus

- 1. Prove that the area of the loop of the Folium of Descartes: $x^3 + y^3 = 3axy$ is three times the area of one loops of the Lemniscate of Bernoulli: $(x^2 + y^2)^2 = a^2(x^2 y^2)$.
- 2. Find the length of the arc of the hyperbolic spiral $r\theta = a$ from the point r = a to r = 2a.
- 3. Find the length of the arc of the curve $x = e^{\theta} \sin \theta$, $y = e^{\theta} \cos \theta$ from $\theta = 0$ to $\theta = \frac{\pi}{2}$.
- 4. Show that the length of the loop of the curve $r = a(\theta^2 1)$ is $\frac{8a}{3}$.
- 5. A steady wind blows a kite due to west. The kite's height above ground from horizontal position x = 0 to x = 80 ft is given by $y = 150 \frac{1}{40}(x 50)^2$. Find the distance travelled by the kite.
- 6. Sketch the region enclosed by the given curve. Decide whether to integrate with respect to x or y. Draw a typical approximating rectangle and label its height and width and find the area of the region: $y = \sin x$, $y = e^x$, x = 0, $x = \pi/2$.
- 7. The area cut off from the parabola $\sqrt{x} + \sqrt{y} = 1$ by the line x + y = 1 is revolved about this line. Find the volume of the solid generated.
- 8. A curved wedge is cut from a cylinder of radius 3 by two planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the first plane at a 45° angle at the centre of the cylinder. Find the volume of the wedge.
- 9. A region between the curve $y = \sqrt{x}$, $0 \le x \le 4$, and the x-axis is revolved about the x-axis to generate a solid. Find its volume.
- 10. Find the area of the surface swept out by revolving the circle $x^2 + y^2 = 1$ about x-axis.