Nirma University
 Institute of Technology
 Department of Mathematics \& Humanities

B. Tech. (ALL) - Semester - I

Calculus (MA101)

Assgnment - 3

Part I: Differential Calculus

1. Show that $(1+x)^{x}=1+x^{2}-\frac{1}{2} x^{3}+\frac{5}{6} x^{4}-\frac{3}{4} x^{5}+\frac{33}{40} x^{6}+\cdots$
2. Prove that $\log \left(1+x+x^{2}+x^{3}+x^{4}\right)=x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}-\frac{4}{5} x^{5}+\frac{1}{6} x^{6}+\cdots$
3. Expand $\cos ^{-1}\left(\frac{x-x^{-1}}{x+x^{-1}}\right)$ in ascending powers of $\mathrm{x} .(\mathrm{x}>0)$.
4. Given $\log _{10} 4=0.6021$, calculate approximate value of $\log _{10} 404$.
5. Evaluate the following limits, whichever exists.
a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y \sin x y}{\left(x^{2}+y^{2}\right)}$
b) $\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \sin \frac{1}{x y}$
6. For a function f defined by $f(x, y)=\left\{\begin{array}{ll}\frac{x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}}{}, \text { for }(x, y) \neq(0,0) \\ & \text {,for }(x, y) \neq(0,0)\end{array} \quad\right.$ Verify whether $f_{y x}(0,0)=f_{x y}(0,0)$.
7. If $z=x^{2} \tan ^{-1}\left(\frac{y}{x}\right)-y^{2} \tan ^{-1}\left(\frac{x}{y}\right)$, prove that $\frac{\partial^{2} z}{\partial x \partial y}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$.
8. If $z=3 x y-y^{3}+\left(y^{2}-2 x\right)^{3 / 2}$, verify that $\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}$ and $\frac{\partial^{2} z}{\partial x^{2}} \cdot \frac{\partial^{2} z}{\partial y^{2}}=\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}$.
9. Suppose that your weight ω in pounds is a function $f(c, n)$ of the number c of calories you consume daily and this number n of minutes you exercise daily. Using the units for ω, c and n, interpret in everyday terms the statements $\frac{\partial w}{\partial c}(2000,15)=0.02$ and $\frac{\partial w}{\partial n}(2000,15)=-0.025$
10. A one -meter long bar is heated unevenly, with temperature in ${ }^{\circ} \mathrm{C}$ at a distance x meters from one end at a time t given by $H(x, t)=100 e^{-0.1 t} \sin (\pi x) \quad 0 \leq x \leq 1$.
a) Sketch a graph of H against x for $\mathrm{t}=0$ and $\mathrm{t}=1$.
b) Calculate $H_{x}(0.2, t)$ and $H_{x}(0.8, t)$. What is the practical interpretation (in terms of temperature) of these two partial derivatives? Explain why each one has the sign it does.
c) Calculate $H_{t}(x, t)$. What is its sign? What is its interpretation in terms of temperature?

Part-II Integral Calculus

1. Prove that the area of the loop of the Folium of Descartes: $x^{3}+y^{3}=3 a x y$ is three times the area of one loops of the Lemniscate of Bernoulli: $\left(x^{2}+y^{2}\right)^{2}=$ $a^{2}\left(x^{2}-y^{2}\right)$.
2. Find the length of the arc of the hyperbolic spiral $\mathrm{r} \theta=a$ from the point $r=a$ to $r=$ $2 a$.
3. Find the length of the arc of the curve $\mathrm{x}=\mathrm{e}^{\theta} \sin \theta, \mathrm{y}=\mathrm{e}^{\theta} \cos \theta$ from $\theta=0$ to $\theta=$ $\pi / 2$.
4. Show that the length of the loop of the curve $r=a\left(\theta^{2}-1\right)$ is $\frac{8 a}{3}$.
5. A steady wind blows a kite due to west. The kite's height above ground from horizontal position $x=0$ to $x=80 f t$ is given by $y=150-\frac{1}{40}(x-50)^{2}$. Find the distance travelled by the kite.
6. Sketch the region enclosed by the given curve. Decide whether to integrate with respect to x or y . Draw a typical approximating rectangle and label its height and width and find the area of the region: $y=\sin x, y=e^{x}, x=0, x=\pi / 2$.
7. The area cut off from the parabola $\sqrt{x}+\sqrt{y}=1$ by the line $x+y=1$ is revolved about this line. Find the volume of the solid generated.
8. A curved wedge is cut from a cylinder of radius 3 by two planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the first plane at a 45° angle at the centre of the cylinder. Find the volume of the wedge.
9. A region between the curve $y=\sqrt{x}, 0 \leq x \leq 4$, and the x-axis is revolved about the x -axis to generate a solid. Find its volume.
10. Find the area of the surface swept out by revolving the circle $x^{2}+y^{2}=1$ about x axis.
