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Differential Calculus 

Limits: Calculus got introduced by the Greeks before around 2500 years, who 

found areas using the method of exhaustion. They used to find the area of any 

polygon by dividing it into triangles, but the same was little difficult for the curves. 

The Greeks “method of exhaustion” was to inscribe polygons in any figure, 

circumscribe polygons about the figure and then increasing the number of sides of 

the polygon. 

Let us consider the case of a circle with inscribed regular polygons as shown in the 

figure: 

 

         Consider nA  as the area of the inscribed polygon with ‘n’ sides. As ‘n’ 

increase, it is observed that  approaches to the area of the circle. The area of the 

circle obtained is the limit of the areas of the inscribed polygons and we denote it by  

. 

   Definition:  The function f : A  R, where A  R  is said to have limit L at x = a  

(a may or may not belong to A) if given , there exists , depending upon a 

and  such that  

  whenever  .  

Notation : . 

Properties: If  (for the last property it must be nonzer0)exists. Then  

nA

lim n
n

A A




 

0  0 



 f x L   0 x a   

 lim
x a

f x L




   lim , lim
x p x p

f x g x
 
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Application: The concept of a limit is necessary in order to understand the workings 

of the differential as well as the integral calculus. Limits are used in differentiation 

while finding the approximation for the slope of a line at a particular point, as well 

as in integration while finding the area under a curve. Also it is very useful to solve 

the problems of tangent, velocity, acceleration and the problems of engineering. 

   Limit is also used in deciding the nature of an infinite series which is helpful in 

Fourier series, Fourier integral and Z-transform, which gives Electrical Engineers an 

idea of signals of communications.                                             

Differentiation 

The derivative of the function f at a is the limit 

 

where  is a notation of a derivative. 
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Applications: 

 We use the derivative to determine the maximum and minimum values of 
field variables (e.g. cost, strength, amount of material used in a building, 
profit, loss, etc.). 

 In Chemical Engineering for finding the Work done under isothermal   process 
using the differential equations   as follows: 

            

 In Mechanical Engineering for finding the Force acted on a particle using the 
differential equations as follows: 

     

 In Electronics, Instrumentation Controls, Electrical Engineering for finding the 
voltage drop, current and charge using the differential equations: 

     

1 1

2 2

1 1
sin , cos

1– 1–

d d
x x

dx dxx x

  
 

; , ,
dW

p p pressure W work done under isothermal V Volume
dV

   

; , , tan
dW

F F Force W Work done x dis ce
dx

   

,; , arg ,

; , tan

dQ

dt
I I current Q ch e t time

dI
V L V Voltage drop L induc ce

dt

   

 
   
 
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 If we are traveling in a car around a corner and we hit something slippery on 
the road (like oil, ice, water or loose gravel) and our car starts to skid, it will 
continue in a direction tangent to the curve.  

 

 

 Likewise, if we hold a ball and swing it around in a circular motion then let 
go, it will fly off in a tangent to the circle of motion. 

 The spokes of a wheel are placed normal to the circular shape of the wheel 
at each point where the spoke connects with the center.  

 

Successive Differentiation 

If we have y = f(x), then the notations used for the successive derivatives of y with 
respect to x are  

y', y'', y''', ...., ,... 

 

 Some standard formulae of nth derivative: 

Function nth derivative 

  

  

 

 

if m = -1 
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
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Applications: 

 In Chemical Engineering : Successive differentiation is applied in 
amperometric titrations and some kinds of thermal analysis and kinetic 
experiments. Second Order derivative is used in ph-titrations 

 In Instrumentation & Control: Trace analysis is based on fourth order 
derivative which is applied in order to take care to optimize signal-to-noise 
ratio. 

 In Pharmacy: Fourth order derivative is used in the Pharmaceutical 
preparation of medicines in the Pharmaceutical industry. 

Taylor and Maclaurin’s Series Expansion: The concept of a Taylor series 

was formally introduced by the English mathematician Brook Taylor in 1715. If the 

Taylor series is centered at zero, then that series is also called a Maclaurin series, 

named after the Scottish mathematician Colin Maclaurin, who made extensive use 

of this special case of Taylor series in the 18th century. 

  In mathematics, a Taylor series is a representation of a function as an infinite sum  

of terms that are calculated from the values  of the  function's derivatives at a single  

point. 

Taylor's Series is based on the fact that, if a function is continuous and differentiable, 

the value of that function at small distance h from point x will be equal to the value 

of the function at x, plus a "fudge factor," or really a series of fudge factors.  This is 

stuff you should know, because it is used extensively in math, physics, and 

geophysics. 

Taylor's series can be written in several forms. 

 siny ax b 
 

sin
2
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 
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   

   

2 2 12

2 2 12

sin tan

cos tan

n
n ax

n
n ax

b
y a b e bx c n

a

b
y a b e bx c n

a





  
      

  

  
      

  

https://en.wikipedia.org/wiki/Brook_Taylor
https://en.wikipedia.org/wiki/Colin_Maclaurin
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Series_(mathematics)
https://en.wikipedia.org/wiki/Derivative
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 The first is:  

The Incremental Form assumes one is evaluating the function f(h) at f(h+x).  

 

Usually, in problems in applied physics/math, x is a small number, so only the first 

two terms are kept: 

                                        

This amounts to saying that the value of the function at h+x, namely, f (h+x) will be 

equal to f(h), plus a term that represents the slope of the function at h, times the 

distance x. 

The Maclaurin series is a special case of the Taylor series where h, above, is zero: 

 

Some standard Maclaurin series 
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






    

   
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 

 
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Applications: 

 The effectiveness in error determination, function optimization, definite 

integral resolution, and limit determination is evidence of the Taylor series 

being an enormous tool in physical sciences and in Computational science as 

well as an effective way of representing complicated functions. 

 A simple sensitivity analysis technique used in the science and engineering 

fields is presented for its application to memory less electric circuits. It was 

shown that a simple Taylor series expansion can be used in sensitivity. 

 Approximating a numerical value of f(t) by its series to approximate the value 

of the series for an analytic function f(t) at some t within its interval of 

convergence, we can use a Taylor Polynomial of degree N. 

 The Taylor series expansions (TSE) spreadsheets evaluate the statistical 

uncertainty in functions of up to 15 variables and evaluate equations 

consisting of random variables.TSE can accurately calculate the uncertainty 

for some non-linear functions .Someone with experience in using electronic 

spreadsheets should be able to use the provided spreadsheet layout, macros, 

cell functions, and range names to analyze the uncertainty for a user-supplied 

formula. Although the user-supplied formula is restricted to 15 random 

variables, a method of by passing this variable limit is furnished. While it was 

shown that the TSE spreadsheet does perform well, situations may arise where 

the Taylor series expansion analysis evaluated function is nonlinear or 

contains distributions which are highly skewed. Increasing the TSE analysis 

to a higher order (third or fourth order) may eliminate some of the 

discrepancies by Taylor series analysis. 

 Taylor series is useful in Vibrations/Instrumentation System Dynamics. 

 Taylor series is useful in solving the state space model as : 

Models of dynamic systems with concentrated parameters are commonly 

represented using sets of first-order ordinary differential equations (ODEs). 

We call these models State -space model, x(t) = f(x(t), u(t), t) where x is the 

state vector, u is the input vector, and t denotes the time, the independent  

variable across which we wish to simulate. We also require initial conditions 

for the state variables: x(t = t0) = x0. 

Partial differentiation: 

   In practical applications, most of the quantities depend on more than one variable. 

For example volume of a rectangle depends on length, breadth and height; 

temperature of a point on earth depends on longitude and latitude at that point etc. 

So we need to extend the idea of calculus of single variable to calculus of several 

variables. Although rules of calculus remain essentially the same, partial derivatives 
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come into existence. We can find partial derivatives in the studies of probability, 

statistics, fluid dynamics, electricity etc. The list of some of the applications of 

partial derivatives is as follows:  

Function of two variables:  

A function of two variables is a rule that assigns to each ordered pair of real numbers 

( x, y ) in a set D a unique real number denoted by f(x,y) .The set D is the domain of 

f and its range is the set of values that f takes on , that is ,  .),(|),( Dyxyxf    

Function of n variables: 

 A function of n variables is a rule that assigns a number to an 

n- tuples.  

Limit of function of two variables: 

 Let f be a function of two variables x and y, whose domain D includes points close 

to (a, b). Then we say that the limit of f(x, y) approaches (a, b) is L and we write 

L)y,f(x
)(0,0y)(x,

lim 


if for every number 0 there is a corresponding number 0

such that if Dyx ),( and 0<    )( bxax
22  then .),( Lyxf  

Continuity:  

A function of two variables is said to be continuous a (a, b) if ,      

                               . 

We say f is continuous on D if f is continuous at every point (a, b) in D. 

Partial Derivative:  

If f is a function of two variables, its partial derivatives are the functions fx and fy 

defined by  

h

y)f(x,)y,hf(x

0h
lim)yx,(f x




  

h

y)f(x,h)y,f(x

0h
lim)yx,(f y




  

 1 2 3
, , ,...,

n
z f x x x x

( , ) (0,0)
lim ( , ) ( , )

x y
f x y f a b



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Notations for partial derivatives: If ,),( yxfz we write  

 

 

 

Rules for finding Partial Derivatives: 

1. To find f x , regard y as a constant and differentiable f (x, y) with respect to x. 

2. To find f y , regard x as a constant and differentiable f (x, y) with respect to y. 

  Higher Ordered Derivatives 

 

Equation of Tangent Planes:  

An equation to the tangent plane to the surface  yxfz , at the point  zyxP 000 ,, is  

     yyyxfxxyxfzz yx 0000000  ,,  

Equation of normal line to the surface through: 
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
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
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

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
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  
      

  
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f z

x y f x y f ff f f D D yy y y y y

  
      

  

2 2
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2 2
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y
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    
     

    

    
     

      

    
     

      

    
     

    
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Differential (Total derivative): 

   

dy
y

z
dx

x

z
dz

dyyxfdxyxfdz yx











 ,,  

Chain Rule (CASE 1): Suppose that  yxfz ,  is a differentiable function of x and 

y,   where  tgx  and  thy are both differentiable functions of t. Then z is a 

differentiable function of t and 
dt

dy

y

f

dt

dx

x

f

dt

df









  

Chain Rule (CASE 2): Suppose that  yxfz ,  is a differentiable function of x and 

y,   where  tsgx ,  and  tshy , are both differentiable functions of s and t. Then 

z is a differentiable function of s and t. Then  

t

y

y

z

t

x

x

f

t

z

s

y

y

z

s

x

x

f

s

z













































 

Maximum and Minimum Values: 

A function of two variables has a local maximum at (a, b) if    bafyxf ,,  when 

(x, y) is near (a, b). The number f (a, b) is called a local maximum value. If 

   bafyxf ,,  when (x, y) is near to (a, b), then f (a, b) is called a local minimum  

value.   

Second Derivative Test:  Suppose the second partial derivatives of f are continuous 

on a disk with center (a, b), and suppose that   0baf x , and   0baf y , Let  

        baf yxbafbafbaDD yyxx
,,,,

2
  

(a) If D>0 and    bafbaf xx ,,, 0 is a local minimum. 

(b) If D>0 and    bafbaf xx ,,, 0 is a local maximum. 

(c) If D<0 and ),( baf is neither maximum nor minimum. 
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  Method of Lagrange Multipliers: 

To find the maximum and minimum values of  zyxf ,, subject to the constrain    

  kzyxg ,,  

[Assuming that these extreme values exist and 0g on the surface   kzyxg ,, ] 

(a)  Find all values of x, y ,z and λ such that    zyxgzyxf ,,,    and 

  kzyxg ,,  

(b) Evaluate f at all the points (x, y, z) that result from step (a) .The largest of these 

values is the maximum value of f; the smallest is the minimum value of f. 

Euler’s Theorem: 

 If u is a function of x and y of degree n, then .un
y

u
y

x

u
x 









 

Cor. 1 If u is a homogenous function of x and y of degree n, then 
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2
2 













  

 Cor. 2 If Z is a homogenous function of degree n in x and y and Z = f (u) then    

 

 uf

uf
n

y

u
y

x

u
x

'










 

Cor. 3 If Z is a homogenous function of degree n in x and y and Z = f(u) then   

     
 

 uf

uf
nugwhereugug

y

u
y
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u
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












12

2

2
2

2

2

2
2  

Derivative of an implicit function:  

If f (x, y) = 0 be an implicit function with y = g(x), then 
f

f

yf

xf

xd

yd

y

x



  

Taylor’s Expansion for a function of two variables: 

    
2 3

1 1
, , ...

2! 3!
f x h y k f x y h k f h k f h k f

x y x y x y

          
              

          
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Cor.1

  ...),(),(
!

),(),(),(),( 




  baf yykbaf yxkhf xxhbaf ykbaf xhbafkbhaf 222

2

1

Cor.2 

    
   ...),()(),()()(

!

),(),(),(

),(







bafbybafbyaxfax

bafbybafaxbaf

kbhaf

yyxyxx

yx

22 2
2

1  

Jacobian: 

1. If u = u (x, y) and v = v (x, y ) then the Jacobian of u and v w.r.t x and y is given 

by 
 
 

y

v

x

v

y

u

x

u

yx

vu
J























,

,
 

2. If u = u (x, y ,z) and v = v (x, y, z) and w = w(x, y, z) , then the Jacobian of u and 

v and w w.r.t x and y and z is given by 
 
 

z

w

y

w

x

w

z

v

y

v

x

v

z

u

y

u

x

u

zyx

wvu
J











































,,

,,
 

Properties of Jacobian: 

1. If u and v are functions of x and y and x and y are functions of r and s , then 

 
 

 
  ),(

),(
.

,

,

,

,

sr

yx

yx

vu

sr

vu













 

2. If 
 
 yx

vu
J

,

,




 and 

 
 vu

yx
J

,

,
'




 then  

Applications: 

 In Chemical Engineering, partial derivatives (as rate of change) are used to     

find temperature on metal plates. Temperature on the plate varies with 

position. Therefore, it is considered as function of two variables.   

' 1.JJ 
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 Using partial derivatives, we can study a function of more than one variable, 

we can find its maximum, minimum, determine the direction in which it is 

increasing or decreasing without actually plotting the function. 

 By using the optimization of functions (Lagrangian multipliers) in just a few 

steps you can answer very practical and useful questions such as: “You have 

square piece of cardboard, with sides 1 meter in length. Using that piece of 

card board, you can make a box, what are the dimensions of a box containing 

the maximal volume?” When a function of two variables is involved we can 

use second derivative test to find its maximum and minimum values (optimal 

values). We can employ the similar concepts of partial derivatives to find 

optimal values of the function like cost, strength, amount of material used in 

a building, profit, loss, etc. 

 Partial derivatives occur in partial differential equations which are observed 

in various fields. 

(1)  Maxwell's equations of electromagnetism  

(2) Einstein’s general relativity equation for the curvature of space-time             

given mass-energy-      momentum. 

(3) The equation for heat conduction (Fourier) 

(4) The equation for the gravitational potential of a blob of mass (Newton-

Laplace) 

(5) The equations of motion of a fluid (gas or liquid) (Euler-Navier-Stokes) 

(6) The Schrodinger equation of quantum mechanics 

(7) The Dirac equation of quantum mechanics 

(8) The Yang-Mills equation 

(9) The Liouville equation of statistical mechanics 

 PDEs are used in simulation of real life models like heat flow equation is used 

for the analysis of temperature distribution in a body, the wave equation for 

the motion of a waveforms, the flow equation for the fluid flow and Laplace’s 

equation for an electrostatic potential.  

 The famous partial differential equation is the wave or Harmonic equation in 

physics. Then there is the Navier-Stokes equation (For example, the space 

shuttle foam problem during lift-off can be modeled with the Navier-Stokes 

partial differential equation which involves 7 variables in it).All this equations 

occur many times in practical applications and requires knowledge of partial 

derivatives. 
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Integral Calculus 

Proper integral: 

 An integral which has neither limit infinite and from which the integrand does not 
approach infinity at any point in the range of integration. 

Improper Integral: 

An integral is an improper integral if either the interval of integration is not finite 

(improper integral of type 1) or if the function to integrate is not continuous (not 

bounded) in the interval of integration (improper integral of type 2). 

Example:-1. 




0

dxe x . is an improper integral of type 1 since the upper limit of 

integration is infinite. 

Example:-2.  . is an improper integral of type 2 because 
x

1
 is not continuous 

at 0. 

Example:-3. . is an improper integral of types 1 since the upper limit of 

integration is infinite. It is also an improper integral of type 2 because  
1

1

x
 is not 

continuous at 1 and 1 is in the interval of integration. 

Reduction formula: 

(1)  
2

0

sin



dxxm = x
m

m

m

m

m

m
.......

4

5

2

31








  where x = 








evenismif

oddismif

2

1

  

(2)  
2

0

cos



dxxm = x
m

m

m

m

m

m
.......

4

5

2

31








  where  x = 








evenismif

oddismif

2

1

  

(3)  
2

0

sincos



dxxx nm = x
nmnmnm

nnnmm

....).........4)(2)((

..).........5)(3)(1().........3)(1(




, x =








ottherwise

evenarenmif

1

&
2


 

 

1

0

1
dx

x

0

1

1
dx

x




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Applications:  

The process of integration has interesting application in geometry, physics, and 

evaluation of series. These are basic tools of engineering and sciences. Integration 

is used to rectify the curve, evaluate the area of the regions etc. The application of 

integration is given below:  

 Rectification:  

A curve whose length can be found is called a rectifiable curve and the process of 

finding the length of a curve is called rectification.  

(i) Length of the plane curve in Cartesian form: Let be the equation 

of the plane curve. Let S be the length of the arc of the plane curve 

included between two points A and B whose abscissa are a and b. Then S can 

be given as  

 

(ii) Length of the plane curve in Polar form: Let be the polar equation 

of the curve. Then the length of the arc of the curve included between two 

points whose vectorial angles are and  is 

 

(iii)  Length of the plane curve in parametric form: Let and  be 

the equation of the curve in parametric form, where t is a parameter. then the 

length of the curve between the points and is  

 

 y f x

 y f x

2

1

b

a

dy
S dx

dx

 
   

 


 r f 

   

2

2 dr
S r d

d



 






 
   

 


 x f t  y g t

1t t
2t t

2

1

2 2t

t t

dx dy
S dt

dt dt


   
    

   

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 Quadrature: The process of finding the area of a bounded region of a curve 

is called quadrature.  

(i) Area of a plane region in Cartesian form: Let be a function defined 

on the interval ],[ ba . Let us assume that . Then the area A of the 

curvilinear Trapezoid bounded by the curve , the x- axis and the two 

ordinates  and  is given by 

 

The area A bounded by the two curves , and the ordinates  

and  is given by 

, provided  

To find the area of a closed curve we have to find out the tangents to the curve 

parallel to the y-axis. Let  and  be two tangents. Let an intermediate 

ordinate meet the curve in two points  and where , then 

the area A of the closed curve is   

 

Where the values of y1 and y2 corresponding to any value of x are found by 

solving the equation of the curve as a quadratic in y.  

(ii) Area bounded by a Polar Curve: The area bounded by the curve 

between the radii vector and is given by

 

 y f x

  0f x 

 y f x

x a x b

 
b

x a

A f x dx


 

 1y f x  2y f x x a

x b

   

   

2 1

2 1

b b

x a x a

b

x a

A f x dx f x dx

f x f x dx

 



 

   

 



   2 1f x f x

x a x b

 1 ,P x y  2 ,P x y
1 2y y

 1 2

b

x a

A y y dx


 

 r f 

       

 
221 1

2 2
A r d f d

 

   

  
 

     
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(iii)  Area bounded by a Parametric Curve: If  and , , are 

the parametric equations of a curve, then the area bounded by the curve, the 

x-axis and the ordinates  and  is given by  

 

 Volume of the solid of revolution: A solid of revolution is generated when 

we revolve a plane region R about a line L. The line L is called the axis of 

revolution. For example, a plane region R bounded by , x-axis,  

and  is rotated about x-axis then we get a solid. Such a solid is called solid 

of revolution.  

(a) The volume of the solid generated by the revolution about the x- axis of 

the area bounded by the curve , the ordinates ,  and the x-

axis is given by  

. 

(b) The volume of the solid generated by revolution about the y-axis of the 

area bounded by the curve )(ygx  , the abscissa ,  and the x-axis 

is given by  

. 

 Centroid for Curved Areas: 

Taking the simple case first, we aim to find the centroid for the area defined 

by a function f(x), and the 2 vertical lines x = a and x = b as indicated in the 

following figure.  

 x f t  y g t a t b 

x a x b

     
b b

x a x a

d
A f x dx g t f t dt

dt
 

     

 y f x x a

x b

 y f x x a x b

2

b

a

V y dx 

y c y d

2

d

c

V x dy 
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To find the centroid, we use the same basic idea that we were using for the 

straight-sided case above. The "typical" rectangle indicated has width and 

height y = f(x). 

Generalizing from the above rectangular areas case, we can find the 

coordinates   of the centroid using the total moments in the x-direction, 

given by: 

 

and, considering the moments in the y-direction about the x-axis and re-

expressing the function in terms of y, 

 

Of course, there may be a rectangular portion to consider separately, as in the 

given diagram above.  

Alternate method: Depending on the function, it may be easier to use the 

following alternative formula for the y-coordinate, which is derived from 

considering moments in the x-direction (Note the "dx" and the upper and lower 

limits are along the x-axis): 

 

Another advantage of this second formula is there is no need to re-express the 

function in terms of y. 

 

 

 

x

_ _

,x y
 
 
 

 
_ 1

b

a

total moments
x xf x dx

total area A
  

 
_ 1

d

c

total moments
y yf y dy

total area A
  

 
2

_ 1

2

b

a

f xtotal moments
x dx

total area A

    
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 Centroids for Areas Bounded by two Curves:  

 

We extend the simple case given above. The "typical" rectangle indicated has 

width Δx and height y2 − y1, so the total moments in the x-direction over the 

total area is given by: 

 

For the y coordinate, we have 2 different ways we can go about it. 

Method 1: We take moments about the y-axis and so we'll need to re-express 

the expressions x2 and x1 as functions of y. 

 

Method 2: We can also keep everything in terms of x by extending the 

"Alternate Method" given above: 

 

 Moment of Inertia for Areas: 

The moment of inertia, Iy of the given area, which is rotating around the y-

axis. Each typical rectangle indicated has width dx and height , so its 

area is . if k is the mass per unit area, then each typical rectangle 

has mass . 

 
_

2 1

1
b

a

total moments
x x y y dx

total area A
  

 
_

2 1

1
d

c

total moments
x y x x dy

total area A
  

   
2 2

_
2 11

2

b

a

y ytotal moments
y dx

total area A


  

2 1y y

 2 1y y dx

 2 1k y y dx
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The moment of inertia for each typical rectangle is , since each 

rectangle is x units from the y-axis. We can add the moments of inertia for all the 

typical rectangles making up the area using integration:  

 

using a similar process the radius of gyration Ry is given by: 

  where m is the mass of the area. 

 Work:  Assume that a constant force F is used to move an object a distance d 

along a straight line. then we know that the work done by the force is defined 

to by the product of force and distance. However, this formula does not work 

when force F is a variable. In such a case we use the method of integration as 

an efficient tool for calculating work.  

Let F be a continuous function on the closed interval [a, b] that represents force. 

then the work done by the force F in moving an object from  and along 

a straight line is given by  

where F is the variable force.  

 

 

  2

2 1k y y dx x  

 2

2 1

b

y

a

I k x y y dx 

y

y

I
R

m


x a x b

  ,

b

a

W F x dx 
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 Average value of a function: 

 Currents and voltages often vary with time. Engineers may wish to know the 

average value of such current or voltage over some particular time interval. The 

average value of a time-varying function is defined in terms of an integral. An 

associated quantity is the root mean square of a function. root mean square value of 

a current is used in the calculation of the power dissipated by a resistor.  

Suppose is a function defined on . The area, A, under f  is given by 


b

a

dtfA . 

A rectangular with base spanning the interval [a, b] and height h has an area of 

. Suppose the height, h, is chosen so that the area under f and the area of the 

rectangle are equal. This means 

 

 

Then h is called the average value of the function across the interval [a, b]. 

 Root mean square value of a function:  

If is defined on [a, b], the root mean square value is given by 

 

 

 

 f t a t b 

 h b a

 
b

a

h b a fdt  

 

b

a

fdt

h
b a






 f t

  

 

2

Root mean square

b

a

f t dt

b a





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Beta-Gamma function: 

The common method for determining the value of n! is naturally recursive, found by 

multiplying nnn  )1()2(4321  , through this is terribly inefficient for large n. 

Is there an explicit way to determine the value of n! which uses elementary algebraic 

operations? Is it possible to find  n!  for real value numbers?  The answer to this 

question is, “The gamma function”. The gamma function was first introduced by 

Swiss mathematician Leonhard Euler. 

Gamma function: 

The gamma function (also known as Euler’s integral of the second kind) is denoted 

by n  and defined as  




 
0

1 0; ndxxen nx  

Properties of Gamma function: 

  (1) 0;1  nnnn . 

  (2) !1 nn  , when n  is positive integer. 

  (3) 


 
0

12 0;2
2

ndxxen nx . 

  (4) .0,0;1

0

 





 nadxxe
a

n
nax

n
 

  (5) 
2

1
 

  (6) 


 
0

2

2 
dxe x  
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Beta function: 

The beta function (also known as Euler’s integral of first kind) is denoted by ),( nmB  

or ),( nm and defined as  

0,0;)1(),( 1

1

0

1  

 nmdxxxnmB nm . 
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Properties of Beta function: 

  (1) ),(),( mnBnmB   

  (2) 



dnmB nm




2

0

1212 cossin2),(  

  (3) dx
x

x
nmB

nm

m











0

1

)1(
),(  

  (4) dx
x

xx
nmB

nm

nm

 








1

0

11

)1(
),(  

Relation between Beta and Gamma functions:                                             

nm

nm
nmB




),(  

Some standard Results: 

  (1) 

2

2
2

2

1

2

1

2

1
,

2

1

2

1
cossin

2

0 










 


qp

qp

qp
Bdqp



 . 

  (2) 10;
sin

1  n
n

nn



 (Euler’s formula). 

  (3) nnn
n

2
22

1
12 




 (Legendre’s formula or Duplication formula) 

Application of Beta-Gamma functions: 

 The Euler Beta function appeared in elementary particle physics as a model 

for the Scattering amplitude in the so called “dual resonance model” 

 In string theory, the partition function of dense harmonic matter is described 

in terms of Gamma function. 

 In Mechanical engineering, Incomplete Gamma function is used in Transient 

heat conduction. 

 In Mechanical engineering, Gamma function is used in Acceleration field of 

a fluid. 
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 Nuclear interactions of elementary particles modeled as one-dimensional 

strings instead of zero-dimensional particles were described by the Euler beta 

function. 

 The Gamma function, find application in such diverse area as quantum 

physics, astrophysics, fluid dynamics, thermodynamics. 

 Beta and Gamma functions are used to evaluate integrals. 

 The solution of Bessel function, hyperbolic Bessel function are involve 

Gamma function.  

 The gamma function can also be used to calculate "volume" and "area" of             

n -dimensional hyperspheres. 

 

 Used in probability density function of Gamma distribution (This Gamma 

distribution is used in Statistics to model a wide range of process, for example, 

the time between occurrence of earth quakes), 

Error function: 

The error function of x  is defined by dtexerf

x

t




0

22
)(


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Complimentary error function: 

The complimentary error function of x  is defined by dtexerf
x

t

c 



22

)(

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Properties: 

  (1) 0)0( erf  , 1)0( cerf . 

  (2) 1)( erf  , 0)( cerf . 

  (3) 1)()(  xerfxerf c . 

  (4) )(xerf  is an odd function. 

  (5) 2)()(  xerfxerf cc . 

  (6) 







 .....

7!35!23!1

2
)(

753 xxx
xxerf


 

Applications: 

 In chemical engineering, the error function arises when you are solving for 

the diffusion of heat through a medium when the heat source is "pulsing". 

 In chemical engineering, the error function is used in working on problems of 

distribution of velocities of gases in different astrophysical regimes. 

Molecular velocities are (usually) distributed according to a Gaussian 

function, and in trying to determine fractions of molecules with speeds in 

certain ranges, the error function popped up. 
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 In mechanical engineering, the application of the Error Function is in heat 

conduction (or in atomic diffusion, mathematically similar phenomena). It’s 

used to describe the transient temperature (or concentration) gradient as a 

function of distance beneath the surface, x, and time, t, for a semi-infinite 

solid.  The free surface of this solid is exposed to a different temperature (or 

atomic concentration) than the bulk. In the analysis the surface (where x = 0) 

temperature never changes.  Over time (t increasing) the temperature curve 

inside the sold flattens out and approaches the surface.  The shape of this curve 

is some whacked out integral that they named erf.  

 In electric engineering, Use of erf or Cerf  for solving differential equations 

include short-circuit power dissipation in electrical engineering. 

Multiple integral: 

In ordinary integration, we are concerned with the area under the curve . 

Many functions of interest in real life entail several variables, and multiple integrals 

are a natural extension of the one-dimensional ideas to deal with multivariate 

problems. 

To get a feel for how multiple integrals arise, let’s consider a couple of physical 

example. Suppose that we wish to calculate the force exerted on a wall by a gale. If 

the pressure P  was constant across the whole face with area A , then the total force 

is simply . With a varying pressure , the answer is not obvious. This 

situation can be handled by thinking about the wall as consisting of many small 

squares segments, each with area , so the total force is the sum of all the 

contributions ; in the limiting case  and , we have 

Force = , 

Where the double integral indicates that the infinitesimal summation is being carried 

out over a two-dimensional surface (in  and  directions). 

Incidentally, if the wall does not have a convectional (rectangular) shape then its 

area can be calculated similarly according to  

Area =  

Another illustration is provided by quantum mechanics where the modulus squared 

of the wave function, , of an electron (say) gives the probability density of 

finding it at some point in space. The chances that the electron is in a small (cuboids) 

( )y f x

.P A ( , )P x y

x y 

( , )P x y x y  0x  0y 
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region of volume  is then . Hence, the probability of finding 

it within a finite domain  is given by  

Probability = , 

which is known as Triple integral or volume integral. 

 Area by double integration: 

a) Cartesian coordinates: 

The area of a region  in plane bounded by the curves  

and the lines  is  

  

R

b

a

xf

xf

dxdydxdyA
)(

)(

2

1  

b) Polar coordinates 

 The area  of a region  bounded by the curves                                    

 and the radii vectors  is  

 




ddrrdydxA

R  

 Volume as a double integrals: 

             Where in Cartesian form  

              Where  in polar form 

 Volume of solid of revolution: 

    
 Where  is a plane curve in Cartesian form.  

     Where  is polar curve (when rotated about 

    initial line)   

x y z  
2

( , , )x y z x y z   

V

2
( , , )x y z dxdydz
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2
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 Where  is polar curve (when rotated about the      

line 
2


   ) 

      Volume as a triple integral: 

  The volume V  of a three dimensional region is    

 Centre of Gravity: 

a)  Centre of gravity (centroid) of a lamina 

If  be the surface density, and if the curve is given in Cartesian 

coordinates then the C.G. of lamina are 

,      

If the curve is given in polar coordinates ,  then  

     

 

b) Centre of gravity of solid: 

If  be the volume density,  then the coordinates of the C.G. of 

solid are 

, , 

 

 Moment of Inertia 

a) Moment of inertia of plane lamina 

Let  be the area of a plane lamina and  its density, then the moment of inertia 

of an area  about the  axis is 

2
2 cos ,V d drr    ( )r f 
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     The moment of inertia of an area  about the axis is                                       

 

The moment of inertia of an area  about an axis through the origin and        

perpendicular to the plane is          

 

b) Moment of inertia of a solid 

Let  be the volume of a solid and  its density, then the moment of inertia of a 

solid about the  axis is 

 

   The moment of inertia of a solid about axis is 

 

      The moment of inertia of a solid about axis is 

 

 Mean values: 

The mean value of the function  over a region of an area  is given by           

M.V. of z  over an area  =  

      The mean value of the function  over a region of volume  is given        

2 2
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      by M.V. of z  over an volume  =   

Applications: 

 In the part of vector integration, multiple integrals are useful in defining line 

integrals, surface integrals & volume integrals, and as a part of its application 

multiple integrals are useful in Gauss Divergence theorem, Stoke’s theorem 

and Green’s theorem. 

 Multiple integrals are useful in probability to define joint density function. For 

example, consider a pair of continuous random variables  and , such as 

the lifetimes of two components of a machine or the height and weight of an 

adult female chosen at random. The joint density function of  and  is a 

function  of two variables such that the probability that  lies in region 

 is:         

 

 Finding the Average of a Function using double integrals: 

A function can represent many things. One example is the path of an airplane. 

Using calculus (Multiple integrals) you can calculate its average cruising 

altitude, velocity and acceleration. Same goes for a car, bus, or anything else 

that moves along a path.  

 

 

 

 Calculating the Area of Any Shape: Although we do have standard methods 

to calculate the area of some shapes, calculus allows us to do much more. 

Trying to find the area on a shape like this would be very difficult if it 

wasn’t for calculus. 
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  Green's Theorem, which gives the relationship between a line integral around 

a simple closed curve C and a double integral over the plane region D bounded 

by C, is applied in an instrument known as a planimeter, which is used to 

calculate the area of a flat surface on a drawing. For example, it can be used 

to calculate the amount of area taken up by an irregularly shaped flower bed 

or swimming pool when designing the layout of a piece of property. 

  Discrete Green's Theorem, which gives the relationship between a double 

integral of a function around a simple closed rectangular curve C and a linear 

combination of the anti derivative's values at corner points along the edge of 

the curve, allows fast calculation of sums of values in rectangular domains. 

For example, it can be used to efficiently calculate sums of rectangular 

domains in images, in order to rapidly extract features and detect object. 

 Differential form and integral form of physical laws: As a result of the 

divergence theorem, a host of physical laws can be written in both a 

differential form (where one quantity is the divergence   of another) and an 

integral form (where the flux of one quantity through a closed surface is equal 

to another quantity). Three examples are Gauss's law (in electrostatics), 

Gauss's law for magnetism, and Gauss's law for gravity. 

 Continuity equations: Continuity equations offer more examples of laws with     

both differential and integral forms, related to each other by the divergence 

theorem. In fluid dynamics, electromagnetism, quantum mechanics, relativity 

theory, and a number of other fields, there are continuity equations that 

describe the conservation of mass, momentum, energy, probability, or other 

quantities. Generically, these equations state that the divergence of the flow 

of the conserved quantity is equal to the distribution of sources or sinks of that 

quantity. The divergence theorem states that any such continuity equation can 

be written in a differential form (in terms of a divergence) and an integral form 

(in terms of a flux).  

 Inverse-square laws: Any inverse-square law can instead be written in a 

Gauss'   law-type form (with a differential and integral form, as described 

above). Two examples are Gauss' law (in electrostatics), which follows from 

the inverse-square Coulomb's law, and Gauss' law for gravity, which follows 

from the inverse-square Newton's law of universal gravitation. The derivation 

of the Gauss' law-type equation from the inverse-square formulation (or vice-

versa) is exactly the same in both cases.  

 The main thing in electromagnetic is Maxwell equation which is based on this 

stokes theorem and divergence theorem. When we calculate stoke theorem 

then definitely double integrals is used.(For more information visit the 

following site:http://www.scribd.com/doc/97929011/Multiple-Integrals-and-

Its-Application-in-Telecomm-Engineering) 
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https://en.wikipedia.org/wiki/Gauss%27s_law_for_magnetism
https://en.wikipedia.org/wiki/Gauss%27s_law_for_gravity
https://en.wikipedia.org/wiki/Continuity_equation
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https://en.wikipedia.org/wiki/Electromagnetism
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Relativity_theory
https://en.wikipedia.org/wiki/Relativity_theory
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https://en.wikipedia.org/wiki/Inverse-square_law
https://en.wikipedia.org/wiki/Gauss%27_law
https://en.wikipedia.org/wiki/Coulomb%27s_law
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https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation

