Nirma University Institute of Technology Department of Mathematics \& Humanities
 B. Tech. (ALL) - Semester - I
 Calculus (MA101)
 Tutorial - 2

Schedule week: 28-08-17 to 01-09-17

Part I: Differential Calculus

1. Find ${ }_{n^{n}}$ derivative of the following functions:
(i) $y=\frac{x}{(4 x+3)(x-1)}$
(ii) $y=\log \left(\frac{3 x-1}{3 x+1}\right)^{1 / 3}$
(iii) $y=\frac{1}{x^{2}+a^{2}}$
2. Find ${ }_{n^{n}}$ derivative of $y=a^{2 x}+\frac{x}{x-1}$.

Part-II Integral Calculus

1. Show that $\int_{0}^{\infty} 3^{-x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{\log 3}}$.
2. Show that $\int_{0}^{1}\left(x \log \frac{1}{x}\right)^{1 / 3} d x=\left(\frac{3}{4}\right)^{4 / 3} \sqrt{\frac{4}{3}}$.
3. Show that $\int_{0}^{\infty} e^{-a^{2} x} x^{\frac{3}{2}} d x=\frac{3}{4 a^{5}} \sqrt{\pi}$.
4. Show that $\int_{0}^{1}\left(\frac{x^{3}}{1-x^{3}}\right)^{\frac{1}{2}} d x=\frac{\pi^{2} 2^{-\frac{1}{3}}}{\left(\sqrt{\frac{1}{3}}\right)^{3} \cdot \sin \left(\frac{\pi}{3}\right)}$
5. A particle of mass m starts moving from rest along the x-axis towards the origin from its initial position $x=1$. Its initial potential is given by $V=-\frac{1}{2} m \log x$. Find the time required for the particle to reach the origin which is given by $\int_{0}^{1} \frac{1}{\sqrt{-\log x}} d x$ for the problem.
