Nirma University Institute of Technology Department of Mathematics & Humanities B. Tech. (ALL) – Semester - I Calculus (MA101) <u>Tutorial – 2</u>

Schedule week: 28-08-17 to 01-09-17

Part I: Differential Calculus

1. Find _{*n*^{*n*}} derivative of the following functions:

(i)
$$y = \frac{x}{(4x+3)(x-1)}$$

(ii) $y = \log\left(\frac{3x-1}{3x+1}\right)^{\frac{1}{3}}$
(iii) $y = \frac{1}{x^2 + a^2}$

2. Find _{nⁿ} derivative of $y = a^{2x} + \frac{x}{x-1}$.

Part-II Integral Calculus

- 1. Show that $\int_{0}^{\infty} 3^{-x^{2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{\log 3}}$. 2. Show that $\int_{0}^{1} \left(x \log \frac{1}{x} \right)^{\frac{1}{3}} dx = \left(\frac{3}{4} \right)^{\frac{4}{3}} \sqrt{\frac{4}{3}}$.
- 3. Show that $\int_{0}^{\infty} e^{-a^{2}x} x^{\frac{3}{2}} dx = \frac{3}{4a^{5}} \sqrt{\pi}$.

4. Show that
$$\int_{0}^{1} \left(\frac{x^{3}}{1-x^{3}}\right)^{\frac{1}{2}} dx = \frac{\pi^{2} 2^{\frac{1}{3}}}{\left(\sqrt{\frac{1}{3}}\right)^{3} \cdot \sin\left(\frac{\pi}{3}\right)^{\frac{1}{2}}}$$

5. A particle of mass *m* starts moving from rest along the *x*-axis towards the origin from its initial position x = 1. Its initial potential is given by $V = -\frac{1}{2}m\log x$. Find the time required for the particle to reach the origin which is given by $\int_{0}^{1} \frac{1}{\sqrt{-\log x}} dx$ for the problem.