Nirma University

Institute of Technology

Department of Mathematics & Humanities

B. Tech. (ALL) – Semester - I Calculus (MA101)

Given week:

Tutorial – 7

Submission week:

Part I: Differential Calculus

1. If
$$u = \sin^{-1}\left(\frac{x^2 + y^2 + z^2}{ax + by + cz}\right)$$
, Show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 2\tan u$

2. If
$$z = x^4y^2 \sin^{-1}\left(\frac{x}{y}\right) + \log x - \log y$$
, show that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 6x^4y^2 \sin^{-1}\left(\frac{x}{y}\right)$.

3. If
$$u = x\phi(\frac{y}{x}) + \varphi(\frac{y}{x})$$
 then show that

$$(i) x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = x \phi \left(\frac{y}{x}\right)$$

(ii)
$$x^2 u_{xx} + 2xy u_{xy} + u^2 u_{yy} = 0$$
.

Part-II Integral Calculus

- 1. Evaluate $\iint x + y \, dy \, dx$ through the area enclosed by the curves y = 2x, x y = 2, y = 0, y = 1.
- 2. Evaluate $\int_0^\infty \int_0^\infty (x^2 + y^2) dx dy$ and hence show that $\int_0^\infty e^{-x^2} = \frac{\sqrt{\pi}}{2}$.
- 3. Evaluate $\int_0^1 \int_0^{1-x} e^{y} \int_{x+y}^{x+y} dy dx$