Nirma University Institute of Technology Department of Mathematics & Humanities B. Tech. (ALL) – Semester - I Calculus (MA101) <u>Tutorial – 9</u> Submission week:

Given week:

- Part I: Differential Calculus 1. If z is a function of x & y and $x = e^{u} + e^{-v}$, $y = e^{-u} + e^{v}$ prove that $x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} - \frac{\partial z}{\partial v}$.
 - 2. If V is a function of *u*, *v* where u = x y and v = xy prove that $x \frac{\partial^2 V}{\partial x^2} + y \frac{\partial^2 V}{\partial y^2} = (x + y) \left(\frac{\partial^2 V}{\partial u^2} + xy \frac{\partial^2 V}{\partial v^2} \right)$
 - 3. Find Taylorøs expansion of $f(x, y) = \cos^{-1}xy$ in powers of (x + 0.5) and (y 2) up to second degree terms. Hence compute f(-0.4, 2.2) approximately.

Part-II Integral Calculus

1. Evaluate $\iint (y-x) dx dy$ over the region enclosed by the straight lines y = x + 1,

$$y = x - 3, y = -\frac{1}{3}x + \frac{7}{3}, y = -\frac{1}{3}x + 5.$$

2. Calculate the area which is inside the cardioid $r = 2(1 + \cos\theta)$ and outside the circle r = 2.

Nirma University Institute of Technology Department of Mathematics & Humanities B. Tech. (ALL) – Semester - I Calculus (MA101) <u>Tutorial – 10</u> Submission week:

Given week:

Part I: Differential Calculus

- 1. An aquarium with rectangular sides and bottom (and no top) is to hold 32 litres water. Find its dimensions so that it will use the least amount of material.
- 2. Divide 24 into three parts such that the continued product of the first, square of the second and the cube of the third may be maximum.
- 3. Find the maximum and minimum values of f(x, y, z) = x 2y + 5z on the sphere $x^2 + y^2 + z^2 = 30$.

Part-II Integral Calculus

- 1. Find the volume of the tetrahedron bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the coordinate planes.
- 2. Evaluate the volume of the sphere of radius $\pm a \phi$ using triple integrals.
- 3. Find the volume of the solid which is bounded by the paraboloid $4z = x^2 + y^2$, the cone $z^2 = x^2 + y^2$ and the cylinder $x^2 + y^2 = 2x$.